Norberto C. Nadal-Caraballo, PhD

US Army Engineer R&D Center Coastal and Hydraulics Laboratory Vicksburg, MS, USA Norberto.C.Nadal-Caraballo@usace.army.mil September 12th, 2013

US Army Corps of Engineers

Phase I: Extremal Analysis of Storm Tide and Sea Level Change

- Low-fidelity approach (Initial assessment)
 - StormSim software system extremal analysis and Monte Carlo simulation
 - NOAA verified historical water level measurements (QA/QC, high-water marks)
 - 23 NOAA gage locations
 - 6 USACE/NOAA sea level change (SLC) scenarios
 - Develop storm response benchmark for Phase II validation

Phase II: Joint Probability Analysis of Tropical & Extratropical Storms

- High-fidelity approach
 - Joint Probability Method (JPM) Bayesian Quadrature Optimal Sampling
 - StormSim JPA of storm forcing parameters and storm response
 - CSTORM-MS modeling of storm suite
 - Sea level change and astronomical tide scenarios incorporated in the analysis

Phase I: Extremal Analysis of Storm Tide and Sea Level Change

Limitations of low-fidelity approach

- Response-based statistics
 - Analysis limited to gage measurements, high-water marks
 - Limited to historical occurrences (e.g., sparse hurricane landfalls, tracks)
 - Does not incorporate insight from storm-forcing probabilities
- Mixed storm populations
 - Extratropical and tropical storms, and hurricanes considered as single population
 - Hurricane population is statistically underrepresented
- Short record lengths, data gaps, and missing storms

StormSim is an extremal statistical analysis and storm simulation software system.

Integrated framework of Matlab[®] routines Has been utilized in several recent studies, including:

- USACE Districts and FEMA coastal risk analysis,
- R&D applications,
- coastal planning and engineering, and
- emergency management.

StormSim – Summary of Capabilities

- Joint probability analysis (JPA) of extratropical and tropical storms / hurricanes.
- Historical data censoring and pre-processing
 HURDAT2, NOAA-NOS gages, NDBC buoys, others
- Extremal analysis (marginal / conditional distributions)
- Monte Carlo simulation and Bootstrap methods
- Time-dependant, life-cycle analysis
- Simulation of water level and wave climate
 - Sea level change (SLC)

NOAA-NOS Water Level Gages (total: 23)

	Region I	Region II	Region III
1. 2. 3. 4. 5. 6. 7. 8. 9.	Eastport, ME Bar Harbor, ME Portland, ME Boston, MA Woods Hole, MA Nantucket Island, MA Newport, RI Providence, RI New London, CT	 10. Montauk Point Light, NY 11. Kings Point, NY 12. The Battery, NY 13. Sandy Hook, NJ 14. Atlantic City, NJ 15. Cape May, NJ 	 16. Lewes, DE 17. Cambridge, MD 18. Baltimore, MD 19. Annapolis, MD 20. Solomon Island, MD 21. Washington, DC 22. Sewells Point, VA 23. Chesapeake Bay Bridge Tunnel, VA
			-

USACE/NOAA Sea Level Change Scenarios

References: USACE 2011: Sea Level Change Considerations for Civil Works Programs NOAA 2012: Global Sea Level Rise Scenarios for the United States National Climate Assessment

Phase I: General Methodology

- Extremal analysis of measured water levels
 - Hourly and monthly maximum data (Data gap filling)
 - Generalized Pareto distribution (GPD)
 - Maximum likelihood fitting method (MLM)
 - Bootstrapping compute mean, confidence limits
- Monte Carlo Life-Cycle Simulation (Double-Loop)
 - ► Inner loop
 - 100-year life-cycle simulation
 - Storm tide = astronomical tide + storm surge + SLC scenario
 - Outer loop
 - 10,000 simulations of inner loop

Phase I: General Methodology

- Extremal analysis of measured water levels
 - Maximize the use of available data No extreme storms missing

Phase I: General Methodology

- Extremal analysis of measured water levels
 - Maximize the use of available data No extreme storms missing

2025

0

Phase I: General Methodology

Extremal analysis of measured water levels

Generalized Pareto Distribution – Bootstrapping/MCS

Phase I: General Methodology

Extremal analysis of measured water levels

Generalized Pareto Distribution – Bootstrapping/MCS

Validation of Extremal Analysis Results

ERDC GPD-MC vs. NOAA GEV results

RP = 10 yr

Differences for all 23 gages < 0.10 m; RSMD = 0.04 m

RP = 100 yr

- Differences for 21 of 23 gages < 0.25 m; RMSD = 0.11 m</p>
- Exceptions: Providence, RI = 0.42 m; Washington, DC = 0.75 m

Phase I: General Methodology

- Monte Carlo Life-Cycle Simulation
 - ► Uses only hourly WL, decomposed into:
 - Storm surge/residuals
 - Astronomical tide
 - Sea level change
 - ► Inner loop (1st) = 100-year life-cycle
 - WL = random surge + random tide + RSLC(t)
 - $RSLC(t) = (LSLC_{gage} GSLC_{mean}) + GSLC(t)_{scenario}$
 - Five SLC scenarios

► Outer loop (2nd) = 10,000 simulations of the 1st loop

Phase I: General Methodology

Monte Carlo Life-Cycle Simulation

Storm Surge/Residuals = Measured WL (detrended) – Predicted WL

Phase I: General Methodology

Monte Carlo Life-Cycle Simulation

Storm Surge/Residuals = Measured WL (detrended) – Predicted WL

Phase I: General Methodology

Monte Carlo Life-Cycle Simulation

Storm Surge – GPD

Phase I: General Methodology

Monte Carlo Life-Cycle Simulation

Astronomical Tide – Empirical CDF

Monte Carlo Life-Cycle Simulation

Monte Carlo Life-Cycle Simulation

Path Forward

Phase I

Technical Report - final draft

Phase II

Extratropical storms

- Storm selection process
- Composite Storm Set (CSS) methodology [Nadal-Caraballo et al. 2012]

Hurricanes

- Marginal distribution of storm forcing parameters
- Joint probability analysis
- Definition of synthetic storm suite

Thank you...

