North Atlantic Coast Comprehensive Study Overview for Numerical Modeling

and Climate Change Webinar: Study Needs

U.S. Army Corps of Engineers Coastal Storm Damage Reduction Planning Center of Expertise

12 September 2013

Background

- Hurricane Sandy impacted the Atlantic coastline in October 2012
- Affected entire east coast – Florida to Maine
- Greatest areas of impact: NJ, NY, CT
- Public Law 113-2

North Atlantic Coast Comprehensive Study

"That using up to \$20,000,000* of the funds provided herein, the Secretary shall conduct a **comprehensive study** to address the flood risks of **vulnerable coastal populations** in areas that were affected by Hurricane Sandy within the boundaries of the North Atlantic Division of the Corps..." (*\$19M after sequestration)

 Comprehensive Study to be complete by Jan 2015; unused funds available for future USACE studies

 Areas affected by erosion, precipitation, winds, surge, etc.
 (FEMA's H. Sandy storm surge data)

Goals:

- Provide a Risk Reduction
 Framework , consistent with
 USACE-NOAA Rebuilding Principles
- Promote Coastal Resilient
 Communities with sustainable and robust coastal landscape systems, considering future sea level rise and climate change scenarios, to reduce risk to vulnerable population, property, ecosystems, and infrastructure.

BUILDING STRONG®

Scope

Coastal Framework

- Regional scale
- Interagency collaboration
- Opportunities by region/state
- Identify range of potential solutions and parametric costs by region/state
- Identify activities warranting additional analysis
- **Technical Teams**

Future Mean Sea Level and Other Climate Changes

Computing the Joint Probability of Hurricane Sandy and Historical Coastal Storm Forcing Parameters from Maine to Virginia

BUILDING STRONG_®

Study Needs

- Comprehensive
- Regional Scale: Maine Through Virginia
- Current Science and Engineering: Corps Guidance

Key Technical Components

(Not limited to this list)

- Engineering
- Sea Level Rise and Climate Change (SLR & CC)
- Nature-Based/"Green" Engineering
- Environmental and Cultural
- Economics
- Plan Formulation
 - ► Policy & programmatic
- Coastal GIS Analysis

North Atlantic Coast Comprehensive Study

29 Jan 13

Enactment of Supplemental Legislation PL 113-2

Engineering

Tasks

- Summarize historical data and existing conditions
- Review and update as warranted engineering design criteria for resiliency, robustness and redundancy
- □ Incorporate performance evaluation results
- Refine regional storm suites and storm surge, wave forces
- Identify range of engineering risk reduction measures for range of regional conditions (berms, levees, floodwalls, nature-based infrastructure, etc.)
- Hydrodynamics modeling workshop
- Tools
 - Digital elevation model
 - □ ADCIRC model, wave model
 - □ FEMA Region II/III coastal storm modeling
 - National Hurricane Program data/models (SLOSH, etc.)

BUIL

Sea Level Rise and Climate Change

Tasks

- Use ER 1165-2-212: Sea-Level Change Considerations for Civil Works Programs and NOAA's Global Sea Level Rise Scenarios for the US National Climate Assessment
- Use of existing data to assess risk and consequences of SLR&CC

Evaluate SLR scenarios for the 50-100 year intervals

Identify options that enhance resiliency, redundancy and robustness in areas threatened by SLR & CC

Tools

- Coastal vulnerability tool (IWR)
- □ Comprehensive Evaluation of Sea Level (IWR)
- USGS Vulnerability Tool

