# Adaptive Management Strategies for Resilient Coastlines: A Case Study on the Ft. Pierce, FL Breakwater Project



USACE Workshop November 21<sup>st</sup>, 2013

By: Jenna Phillips



## **Emphasis on "Green" or "Nature-Based" Engineering Solutions for Resiliency**















## OUTLINE

- Background & Project Goals
- Construction
  - Materials
  - Tolerances
  - Site Conditions
  - Installation
- Lessons Learned







#### **Project Location**







### **Project Location**







### **Original Marina Layout**







#### **2004 Hurricane Frances**







### **2004 Hurricane Season**





## **Project Funding**

- City applied for FEMA public funding assistance for the amount exceeding the City's insurance coverage
- FEMA's Hazard Damage Mitigation program provides funding for improvements that reduce the magnitude and cost of damages from future storms
- According to FEMA, Hurricane Frances had a recurrence interval of approx. 9 years
  - Low recurrence interval was key in showing that substantial island construction could be economically justified
- Hurricane Frances was just one of four damaging storms to hit FL which helped to shift the political landscape to allow more robust solutions



### **Project Evolution & Timeline**

- September 2004 Hurricanes Frances
- Feb 2005 Plans for restoration begin
- Nov 2006 Numerical modeling work beings
- Feb 2007 Physical model testing at Queens University in Canada
- August 2009 project went before FL Governor & Cabinet for final approval. Board set moratorium on subsequent large filling projects until 2 years post-construction monitoring
- Dec 2010 US Army Corps issues permit with special conditions
- Late 2011 Project went to bid
- Feb 2012 NTP issued





## **Project Purpose**

- Project Goals
  - 100-Yr Storm Protection
  - Positive Environmental Impact
  - Eco-Tourism/ Aesthetically Pleasing



Physical Model – Queens University







## **Project Layout**

- 12 Island Breakwaters & 1 Peninsular Structure
  - Total of 14.66 Acres
- Ecological Enhancements
  - Oyster Recruitment 1.28 Acres
  - Mangrove Habitat 1.54 Acres
  - Juvenile Fish & Shorebird Habitat
  - Native Plantings
- \$18.9 Million Construction Cost
  - NTP Issued February 2012
  - Construction Finished End of July 2013 – Phase I
  - Phase II replacement of dock structures





### **Design Criteria**

100 Yr Storm Event:

- Fetch Length: 22 km
- Water Depth: 12 to 18 ft
- Design Wave Ht: 6.2 ft
- Wave Period: 5.1 sec
- Surge Elev: +10.5' NGVD

- For 50 Yr Event:
- Limit interior wave ht to < 1.15 ft</li>
- Promote water quality/flushing within marina basin





### **Tern Island**

- Island Geometry
  - 10.5 Acres
  - 1,500 lf x 300 ft
- 7 Groin Structures
- Sand Backfill in Interior
- Ecological Enhancements
  - Living Shoreline
  - Natural Limestone Reefs
  - Roosting Areas







### **Construction Components**

- Geotextile Tubes 10,700 lf
  - Perimeter Dike for Island Creation
  - Structural Core of Groins
  - Bench for Living Shoreline
- Marine Mattress 250,000 sf
  - Foundation for Stone Placement & Scour Apron
  - Geotextile Tube Protection
  - Matrix for Oyster Recruitment & Mangrove Plantings









### **Geotextile Tubes**

- High strength polypropylene, woven geotextile with UV stabilization
- MacTube OS500
  - Approx 500 ppi
- Tube Sizes:
  - 45' circumference
  - 30' circumference
  - Custom lengths





### **Geotextile Tubes**

MacTube Design Considerations:

- Tube Geometry GEOCOPS
  - Fabric & Seam Strength (Factor of Safety)
  - Pumping pressures
  - Sediment characteristics of fill material (upland borrow site)
- External Stability Calcs











### **Marine Mattress**

Compartmental structures composed of high density, flexible, UV stabilized, polypropylene geogrid.

- Dual Project Purpose:
  - Protective Cushion Layer for 2.5 to 5 ton Limestone Boulders
  - Tube Foundation/Scour Protection
- Mattress Types:
  - BX EG 027 6" Thickness
  - UX EG115 12" Thickness



### **Marine Mattress**

- Mattress Dimensions:
  - Lengths = 10', 15', 20', & 25'
  - Width = 5' & 6.5'
- Stone Fill:
  - Ranges from 2" to 6" in diameter
- Approx. Weight = 110 pcf (12" x 20' mat weights ~5.5 Tons)











### **Marine Mattress: Bi-Axial**





**Onsite Preparation** 





#### **Marine Mattress: Uni-Axial**









#### **Onsite Preparation**





#### **Construction Tolerances**

- Geotextile Tubes
  - Horizontal +/- 12"
  - Vertical varied based on application
- Marine Mattresses
  - Varied based on application.
    - Tube coverage = 3"
    - Perimeter = 0"
    - Interior = 8"-12"







## **Site Conditions**

- Water Depths
  - No Impact on mattress and tube installations.
- Water Clarity
  - Impacted marine mattress installations.
- Currents
  - Impacted tube installations; V = 2 m/s







### **Geotextile Tube Installation**

- Production Rates
  - 450 CY in approximately 4 hours
  - Corresponds to ~100 LF of 45' Circ. Tube
- Installation Methodology
  - 1. Install scour protection.
  - 2. Deploy tube at slack tide.
  - 3. Anchor tube in place.
  - 4. Fill until design elevation achieved.







### **Geotextile Tube Installation**

- Production Rates
  - 450 CY in approximately 4 hours
  - Corresponds to ~100 LF of 45' Circ. Tube
- Installation Methodology
  - 1. Install scour protection.
  - 2. Deploy tube at slack tide.
  - 3. Anchor tube in place.
  - 4. Fill until design elevation achieved.







### **Geotextile Tube Installation**

- Production Rates
  - 450 CY in approximately 4 hours
  - Corresponds to ~100 LF of 45' Circ. Tube
- Installation Methodology
  - 1. Install scour protection.
  - 2. Deploy tube at slack tide.
  - 3. Anchor tube in place.
  - 4. Fill until design elevation achieved.







### **Marine Mattress Installation**

- Peak Production Rates
  - 70 Top Cover Mats
  - 30 to 40 Perimeter Mats
- Installation Methodology
  - 1. PVC stakes guide installations.
  - 2. Crane and lifting bar for rough placement.
  - 3. Guide and divers make final adjustments.







### **Marine Mattress Installation**

- Peak Production Rates
  - 70 Top Cover Mats
  - 30 to 40 Perimeter Mats
- Installation Methodology
  - 1. PVC stakes guide installations.
  - 2. Crane and lifting bar for rough placement.
  - 3. Guide and divers make final adjustments.







### **Marine Mattress Installation**

- Peak Production Rates
  - 70 Top Cover Mats
  - 30 to 40 Perimeter Mats
- Installation Methodology
  - 1. PVC stakes guide installations.
  - 2. Crane and lifting bar for rough placement.
  - 3. Guide and divers make final adjustments.







#### **Lessons Learned**

- Scour protection b/w tube installations.
- Incorporate straps into bag designs.
- Site conditions will dictate installation rates.
- Perform periodic inspections.
- Experience a must for tube/mattress installations in adverse conditions with tight tolerances.







## **Project Benefits**

- 100-yr Storm Protection
- Ecological Benefits
  - Living Shorelines
  - Natural Limestone Armor Reefs
  - Roosting Areas
- Increase in Revenue
  - Marina Capacity
  - Eco-tourism
- Serves as "pilot study" for future projects







#### July 2013 – Substantial Completion







Industrial Group

July 2013 – Substantial Completion







Jenna Phillips Coastal Engineer/Technical Manager jphillips@maccaferri-usa.com (301) 331-3787

