

Planning and Design for Resiliency, Reliability, Acceptability, and Sustainability

Nature-based Breakwater Islands for the Fort Pierce Marina

Richard Czlapinski, PE, D. CE

FORT PIERCE MARINA, FLORIDA

CHALLENGE: Planning, Permitting and Constructing Coastal Storm Damage Reduction with Sustainability under Difficult Site and Regulatory Conditions

ETRA TECH

Marina Location and Layout

TETRA TECH

TŁ

CLEAR SOLUTIONS*

2004 Hurricane Season

complex world

Project Challenges

Site Conditions

ETRA TECH

- Strong tidal currents
- Dynamic flood shoal
- Seagrass
- **Permit Constraints**
- State policy barrier
- Project character and scale
- Essential fish habitat
- Aquatic Preserve

Project Planning

Rebuilding Options

TRA TECH

- Rebuild like original
 - Risk of future damage
 - Future reconstruction funding issues
- Rebuild with storm protection
 - Explore FEMA Hazard Damage
 Mitigation funding
 - Improved project with reduced risks

Project Planning

FEMA Hazard Damage Mitigation Funding requires:

- Technical feasibility and effectiveness
- Cost effectiveness

RA TECH

- Hazard Mitigation Plan
- Environmental planning/historic preservation
- Statutory, regulatory and other requirements

Project Planning – Stakeholder Coordination

Regulatory

- USACE
 - USFWS
 - NOAA NMF
 - NOAA PRD
 - EPA
- FDEP
 - FWC
 - State Lands
 - ERP
 - SHPO
 - Governor and Cabinet

Other Stakeholders

- FEMA
- FIND
- FDOT
- St Lucie County
 - Harbor Advisory Committee
 - Port Authority
 - Artificial Reef Program
 - St Lucie Waterfront Council
- FDOT
- Audubon Society
- State and federal legislators

Planning – Technical Feasibility/Effectiveness

Project Design Objectives

- Provide 100-yr wave/current protection
- Reduce basin currents
- Minimize changes in sedimentation patterns
- Improve access channel navigability
- Protect seagrass beds
- Provide for manatee transit
- Provide ecological enhancements with structural performance
- Protection of adjacent city waterfront

Planning – Technical Feasibility/Effectiveness

Hydrodynamic Modeling

- Finite element
- Model domain of 3 by 25 mi

Planning – Cost Effectiveness

Concept Design Development

FEMA Storm Return Period Evaluation

> complex world CLEAR SOLUTIONS"

Planning – Technical Feasibility/Effectiveness

Conceptual Design Development

TE TETRA TECH

Planning – Technical Feasibility/Effectiveness

Physical/Numerical Modeling

complex world

Planning – Technical Feasibility/Effectiveness

Technical Reviews

- FEMA independent technical reviewer
- USACE
 - Local office
 - District office
 - Engineer Research and Development Center
- FL DEP
 - District office
 - HQ
 - Florida Governor and Cabinet
- FDOT
- Final Construction Plan Reviews

Planning – Environmental

Field Investigations

TETRA TECH

- Marine resource surveys
- Bathymetric, sidescan and magnetometer surveys
- Sediment and water sampling and testing

Planning - Environmental

Permitting Issues

ETRA TECH

- Initial agency reaction
- State sovereign submerged land policy
- Precedence issue
- Technical concerns
 - Active flood shoal
 - Marine resources
 - Essential fish habitat
 - Aquatic preserve
 - Marine resource valuations
- EA/FONSI

CLEAR SOLUTIONS

Environmental Planning

Mitigation

RA TECH

- Most of environmental enhancements don't count
- Extensive off-site mitigation
- Extensive monitoring
 - Turbidity Control / Monitoring Plan
 - Island Performance Plan
 - Habitat Creation Plans
 - Habitat Monitoring Plan
 - Island Maintenance Plan
 - Four Mitigation Project Plans

complex world

CLEAR SOLUTIONS

Planning - Environmental

Mosaic Habitat Creation

- Total island area = 15 acres
- Total habitat created = 21.7 acres
 - Oyster habitat = 1.3 acres
 - Artificial reef /riprap substrate = 6.3 acres
 - Mangrove communities = 1.5 acres
 - Coastal dune habitat = 2.2 acres
 - Seagrass recruitment = 8.1 acres
 - Shorebird habitat = 2.3 acres

"I was very impressed by the breakwater habitat islands - I've never seen a proposal with such a welldesigned net environmental benefit before; you really did a great job." – Alexis Meyer, NOAA – NMFS Protected Resources Division

Habitat Developing

Design

complex world CLEAR SOLUTIONS*

Design - Marine Mattresses

complex world

TETRA TECH **Design – Structure Section** Armor stone Marine mattress Geotextile tubes

complex world

Design – Tee Groins

complex world

Construction Monitoring

Special Construction Issues

- Construction sequence
- Proximity to marine resources
- Cost control

ETRA TECH

- City purchased materials
- FEMA budget limits

complex world CLEAR SOLUTIONS

Construction Progress

TETRA TECH

Construction Progress

CLEAR SOLUTIONS"

Construction Progress

CLEAR SOLUTIONS"

Breakwater Island Applications

Shallow Water

TETRA TECH

Wave-affected Areas

QUESTIONS ?