North Atlantic Coast Comprehensive Study Draft Analyses Webinar: Risk, Exposure, and Vulnerability

U.S. Army Corps of Engineers National Planning Center for Coastal Storm Risk Management

4 April 2014

US Army Corps of Engineers BUILDING STRONG_®

Speakers

Amy Guise

Chief, Planning Division, Baltimore District Chief, North Atlantic Coast Comprehensive Study (NACCS) Command Center

- Dave Robbins
 - Project Manager, NACCS
- Julie Rosati

U.S. Army Engineer Research & Development Center (ERDC)

Natural and Nature-Based Features (NNBF) Team, NACCS

NACCS Background

3

- Hurricane/Post-Tropical
 Cyclone Sandy moved to the
 U.S. Atlantic Ocean coastline 22 29 October 2012
- Affected entire U.S. east coast:
 24 States from Florida to Maine; New Jersey to Michigan and Wisconsin
- Areas of extensive damage from coastal flooding: New Jersey, New York, Connecticut
- Public Law 113-2 enacted
 29 January 2013

NACCS Background

"That using up to \$20,000,000* of the funds provided herein, the Secretary shall conduct a **comprehensive study** to address the flood risks of **vulnerable coastal populations** in areas that were affected by Hurricane Sandy within the boundaries of the North Atlantic Division of the Corps..." (*\$19M after sequestration)

Complete by January 2015

Goals

- Provide a Risk Reduction
 Framework , consistent with
 USACE-NOAA Rebuilding Principles
- Support Resilient Coastal Communities and robust, sustainable coastal landscape systems, considering future sea level rise and climate change scenarios, to reduce risk to vulnerable population, property, ecosystems, and infrastructure

BUILDING STRONG_®

<u>Technical Teams</u> USACE Enterprise Agency Subject Matter Experts

- Engineering
- Economics
- Environmental, Cultural, and Social
- Sea Level and Climate Change
- Plan Formulation
- Coastal GIS Analysis

Products

Coastal Framework

- Regional scale
- Collaborative
- Opportunities by region/state
- Identify range of potential solutions and parametric costs by region/state
- Identify activities warranting additional analysis and
- social/institutional barriers

Not a Decision Document

- No NEPA
- No Recommendations

NACCS Framework

Who and what is exposed to flood risk?

- Where is the flood risk?
- What are the appropriate strategies and measures to reduce flood risk and how do they align with each other and other regional plans?
- What is the relative cost of a particular measure compared to the anticipated risk reduction?
- What data are available to make a RISK INFORMED decision?
- What data gaps exist/can be closed through the NACCS?

Extent of Inundation

Cat 1 Maximum Inundation Extent Cat 2 Maximum Inundation Extent Cat 3 Maximum Inundation Extent Cat 4 Maximum Inundation Extent NACCS Planning Reaches Interstate Highways

Cities

Extent of Inundation

Extent of Inundation

Exposure Assessment

Exposure Indices

- Population density and infrastructure (number of people and infrastructure in communities subject to flooding)
- Socio-economic groups (populations that may have more difficulty preparing and responding to flooding)
- Environmental/Cultural (critical habitat, wetlands and other environmental and cultural resources)

• Mapping

- Relative higher exposure = highly populated areas and urban centers
- Boston, NY/northern NJ metropolitan area including Nassau County, Connecticut shoreline, Monmouth and Cape May Counties, the upper Delaware Bay portion of NJ

Population & Infrastructure Exposure

BUILDING STRONG®

U.S.ARMY

<u>Social</u> <u>Exposure</u>

Environmental/ Cultural Exposure

<u>Composite</u> <u>Exposure</u>

Vulnerability Assessment

- Greater vulnerability based on proximity to flooding source
- Exposure * Probability of Flooding
 - Multiply value in each pixel of the composite exposure grid by the probability of flooding
- Additional metrics would need to be considered at smaller scales

<u>Vulnerability</u> <u>Assessment</u>

7.5

1.5 3 4.5

0

<u>Capturing the Community's Perspective of</u> <u>System Vulnerability</u>

- Develop a "questioning tree" that facilitates the development of uservalued weightings of valued system functions.
- Engage the NACCS team and Agency Subject Matter Experts and guide them through the weightings development.
- Engage the community and capture the range of values associated with the various vulnerability metrics so that we can inform the development
 of a vulnerability framework at

of a vulnerability framework the community scale.

Resilience

- How can we quantify resilience of an integrated coastal system (ICS)? Incorporate:
 - Natural and Nature-Based Features (NNBF)
 - Engineering Projects
 - Community Values
- What are the best practices for assessing, operating and maintaining a resilient

coastal system?

BUILDING STROP

Example of Resilient Practices for Reducing Coastal Risks

- Anticipate failure
 - Diverse and redundant protection
 - Modular networks –components are independent of, and complement each other.

waves

Information is accessible for decision-making

Resilience Pilot Study at Jamaica Bay

- Schultz et al.'s (2012) Methodology for quantifying ICS resilience applied to Jamaica Bay as pilot study
- Utilizing NACCS storm forcing calculations

What Happens Next?

- The NACCS team will receive comments for integration into the NACCS report
 - ► Mid-April 2014
- Integration
 - ► Mid-April/May 2014
- Draft Final Report production
 - ► June 2014
- Final USACE vertical team review
 - ► July December 2014
- Submit to Congress
 - ► January 2015

Review Information

- Review documents are DRAFT and NOT FOR DISTRIBUTION
- Download the documents via AMRDEC
 - See email from No-Reply@amrdec.army.mil
- Review the draft analyses documentation
- Follow the link to the feedback form
 - Keep the feedback questions in mind during your review
 - Complete the online feedback form
- Tune into subject-specific webinars
- All feedback forms due by April 14, 2014

What Happens Next?

- Technical Challenges with accessing document and comment forms?
- General issues or for further coordination?
- ► Contact via email:
 - Dave Robbins
 - Baltimore District, USACE

Email: David.W.Robbins@usace.army.mil

Questions

I.H.